Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, s(M)) → ISNAT(N)
U211(tt, V1) → U221(isNat(activate(V1)))
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
ACTIVATE(n__0) → 01
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
ACTIVATE(n__s(X)) → S(X)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V1)
U121(tt, V2) → U131(isNat(activate(V2)))
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
U211(tt, V1) → ACTIVATE(V1)
U411(tt, M, N) → S(plus(activate(N), activate(M)))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, s(M)) → ISNAT(N)
U211(tt, V1) → U221(isNat(activate(V1)))
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
ACTIVATE(n__0) → 01
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
ACTIVATE(n__s(X)) → S(X)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V1)
U121(tt, V2) → U131(isNat(activate(V2)))
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
U211(tt, V1) → ACTIVATE(V1)
U411(tt, M, N) → S(plus(activate(N), activate(M)))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, s(M)) → ISNAT(N)
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
U111(tt, V1, V2) → ACTIVATE(V1)
U211(tt, V1) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
U121(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
U111(tt, V1, V2) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
The remaining pairs can at least be oriented weakly.

ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → ISNAT(N)
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
U411(tt, M, N) → ACTIVATE(M)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
U211(tt, V1) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVATE(x1)) = x1   
POL(AND(x1, x2)) = x2   
POL(ISNAT(x1)) = x1   
POL(ISNATKIND(x1)) = x1   
POL(PLUS(x1, x2)) = x1 + x2   
POL(U11(x1, x2, x3)) = 0   
POL(U111(x1, x2, x3)) = 1 + x2 + x3   
POL(U12(x1, x2)) = 0   
POL(U121(x1, x2)) = 1 + x2   
POL(U13(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U211(x1, x2)) = x2   
POL(U22(x1)) = 0   
POL(U31(x1, x2)) = 1 + x2   
POL(U311(x1, x2)) = x2   
POL(U41(x1, x2, x3)) = 1 + x2 + x3   
POL(U411(x1, x2, x3)) = x2 + x3   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = x1   
POL(n__0) = 0   
POL(n__and(x1, x2)) = x2   
POL(n__isNatKind(x1)) = x1   
POL(n__plus(x1, x2)) = 1 + x1 + x2   
POL(n__s(x1)) = x1   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = x1   
POL(tt) = 0   

The following usable rules [17] were oriented:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → ISNAT(N)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
U211(tt, V1) → ACTIVATE(V1)
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, 0) → ISNAT(N)
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 15 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.

ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
Used ordering: Polynomial interpretation [25]:

POL(0) = 1   
POL(ACTIVATE(x1)) = x1   
POL(AND(x1, x2)) = x1 + x2   
POL(ISNATKIND(x1)) = x1   
POL(U11(x1, x2, x3)) = 1   
POL(U12(x1, x2)) = 1   
POL(U13(x1)) = 1   
POL(U21(x1, x2)) = 1   
POL(U22(x1)) = 1   
POL(U31(x1, x2)) = 1 + x2   
POL(U41(x1, x2, x3)) = 1 + x2 + x3   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(isNat(x1)) = 1   
POL(isNatKind(x1)) = x1   
POL(n__0) = 1   
POL(n__and(x1, x2)) = 1 + x1 + x2   
POL(n__isNatKind(x1)) = x1   
POL(n__plus(x1, x2)) = 1 + x1 + x2   
POL(n__s(x1)) = x1   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = x1   
POL(tt) = 1   

The following usable rules [17] were oriented:

plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVATE(x1)) = 1 + x1   
POL(ISNATKIND(x1)) = 1 + x1   
POL(U11(x1, x2, x3)) = 0   
POL(U12(x1, x2)) = 0   
POL(U13(x1)) = 0   
POL(U21(x1, x2)) = 1   
POL(U22(x1)) = 0   
POL(U31(x1, x2)) = x2   
POL(U41(x1, x2, x3)) = 1 + x2 + x3   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(isNat(x1)) = 1 + x1   
POL(isNatKind(x1)) = x1   
POL(n__0) = 0   
POL(n__and(x1, x2)) = x2   
POL(n__isNatKind(x1)) = x1   
POL(n__plus(x1, x2)) = x1 + x2   
POL(n__s(x1)) = 1 + x1   
POL(plus(x1, x2)) = x1 + x2   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   

The following usable rules [17] were oriented:

plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
The remaining pairs can at least be oriented weakly.

U211(tt, V1) → ISNAT(activate(V1))
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x2
tt  =  tt
ISNAT(x1)  =  x1
activate(x1)  =  x1
n__s(x1)  =  n__s(x1)
isNatKind(x1)  =  isNatKind
plus(x1, x2)  =  plus(x1, x2)
n__plus(x1, x2)  =  n__plus(x1, x2)
n__isNatKind(x1)  =  n__isNatKind
s(x1)  =  s(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
and(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
n__and(x1, x2)  =  x2
0  =  0
n__0  =  n__0
U31(x1, x2)  =  x2
U11(x1, x2, x3)  =  U11(x2)
U12(x1, x2)  =  x1
U13(x1)  =  U13
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22

Recursive path order with status [2].
Quasi-Precedence:
[isNatKind, plus2, nplus2, nisNatKind, U413, isNat1, U111] > [tt, ns1, s1, 0, n0, U13, U22] > U212

Status:
U13: multiset
nplus2: [1,2]
plus2: [1,2]
U22: multiset
U413: [3,2,1]
nisNatKind: []
ns1: multiset
0: multiset
U212: multiset
tt: multiset
n0: multiset
U111: [1]
s1: multiset
isNatKind: []
isNat1: [1]


The following usable rules [17] were oriented:

plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(tt, V1) → ISNAT(activate(V1))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U411(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
The remaining pairs can at least be oriented weakly.

U411(tt, M, N) → PLUS(activate(N), activate(M))
Used ordering: Polynomial interpretation [25]:

POL(0) = 1   
POL(PLUS(x1, x2)) = x2   
POL(U11(x1, x2, x3)) = 0   
POL(U12(x1, x2)) = 0   
POL(U13(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U22(x1)) = 0   
POL(U31(x1, x2)) = x2   
POL(U41(x1, x2, x3)) = 1 + x2 + x3   
POL(U411(x1, x2, x3)) = x2   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(n__0) = 1   
POL(n__and(x1, x2)) = x2   
POL(n__isNatKind(x1)) = 0   
POL(n__plus(x1, x2)) = x1 + x2   
POL(n__s(x1)) = 1 + x1   
POL(plus(x1, x2)) = x1 + x2   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   

The following usable rules [17] were oriented:

plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U411(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.